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Summary: The 6-endo-dig free radical carbocyclization 
of the chiral 1-iodo-Balkynes 5 and 6 has been used to 
prepare the cyclitols 7-9. 

Cyclitols are polyhydroxycyclohexane derivatives with 
important biological activities.' There is currently con- 
siderable interest in the synthesis of these types of 
compounds.2 We have recently described a new approach 
for the preparation of aminodeo~yinositols~ and branched- 
chain cyclitols4 by6-exo-trigradicalcyclization strategies. 

We now report a novel strategy for the asymmetric 
synthesis of inositols. This method is based in the 6-endo- 
dig6 free radical carbocyclization6 of chiral, conveniently 
functionalized l-iod0-5-alkynes.~ We hypothesized that, 
as the 5-exo-dig ring closure of intermediate A would be 
disfavored because two cyclopentanes cannot be trans 
fused, the cyclization of radical species A could be 
exclusively directed, by the 6-endo-dig path, to the 
functionalized cyclohexene B (Scheme 1). Although 
kinetically controlled radical cyclizations follow prefer- 
entially the exo mode? major endo products have been 
observed in the ring closure with sterically hindered exo 
atomsFb in the annelation of amidyl radicals with terminal 
bonds: and when a silicon atom is involved in the r ad i~a l .~  
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It has been also claimed that the uendo ring closure is 
excluded for simple 5-hexynyl radicals ... and when closure 
involves a terminal C=X bond."1° 

Contrary to these expectations we now report for the 
f i s t  time the successful6-endo-dig free-radical-promoted 
carbocyclization of simple 5-hexynyl radicals. We have 
shown that the subtle trans located 1,3-dioxolane moiety 
in a radical precursor can influence the regioselectivity 
in the carbon-centered cyclization. We have used this 
concept in the transformation of (2R,3R)-diethyl 2,3-0- 
isopropylidenetartrate 1,11 via species Aa12 (Scheme l), 
into cyclitols 7-9 (Scheme 2). 

These ideas have been put into practice with the 
synthesis and cyclization of compounds 5 and 6. The 
simple route 111 +213 - 3,14 followed by Swern oxidation16 
and ethynylmagnesium bromide addition to the aldehyde 
4 (Scheme 21, allowed us to obtain the radical precursor 
5 in four steps and good overall yield. Compound 5 was 
isolated as a mixture of antilsyn isomers16J7 at C4 in a 
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(SIR = l/l), and traces of the more polar isomer, pure 7 
(C3 S), in 66 % total yield. Basic hydrolysis (MeOH, EhN, 
H2O) of compound 7 (C3 S )  gave 8 (C3 S )  in 88% yield. 
The lH NMR analysis of 7 (C3 S) and 8 (C3 S )  
unequivocally established the relative stereochemistry at 
C2/C3. Thus, since the molecule is in a rigid conformation, 
the value of J2,3 = 3.8 Hz for lH2 in 7(C3 S )  suggests an 
axial-equatorial arrangement of protons H2 and H3. In 
addition, significant cross-peaks (H2/H3, H3/H6ax, H2/ 
HGax, and Hl/H6eq) in the NOESY spectrum of 7 (C3 S )  
indicate a quasiaxial orientation of the OH group. 

The cyclization of compound 5 (anti + syn), under 
similar conditions, and after flash chromat~graphy,~~ 
afforded a mixture of isomers 8 at C3 (SIR:45/55) in 50% 
yield. We were unable to separate them by chromatograpy. 
As shown in the IH NMR spectrum and by comparison 
with the spectral data of 8 (C3 S), this compound was the 
major isomer in the mixture of epimers 8 and, as expected, 
corresponded to the ring closure of the major 5 (anti) 
precursor.17 

Finally, simple acetylation or PDC oxidation20 of the 
allylic alcohols 8 gave the acetates 7 (C3 SIR = 55/45; 90% 
yield) and the cyclohexenone 9 (70% yield), respectively. 
Thus, in spite of the low diastereomeric excess obtained 
in the formation of alcohol 5, we could transform the 
corresponding cyclized isomers 8 into the homogeneous 
ketone 9, a highly functionalized, chiral intermediate for 
the synthesis of different cyclitols and natural products.21 

In summary, we have shown that the 6-endo-dig 
cyclization of simple 5-hexynyl radicals derived from 
precursors 5 and 6 is feasible and the corresponding 
carbocycles can be obtained in good yields. This results 
in a new strategy for the synthesis of inositols. Work is 
now in progress in order to apply this methodology to 
other precursors and will be reported in due course. 
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0 Reagents (a) Ph$,Iz, imidazole, toluene (59%); (b) (COz)C12, 
DMSO, E t a ,  CHaClz (79% 1; (c) BrMgC=CH, THF' (84% ); (d) AczO, 
pyridine (90%); (e) AIBN, BusSnH, toluene; (D MeOH, EtsN, HzO 
(66%); (g) PDC, CHzClz (70%). 

63:37 ratio. This unseparable mixture was submitted to 
standard acetylation conditions giving a mixture of acetates 
6 (antilsyn = 63/37) that we were also unable to separate. 

With the radical precursors in hand, the cyclization was 
attempted.18 The tributyltin hydride + AIBN-mediated 
free radical cyclization of acetate 6 (anti + syn) gave the 
6-endo-dig product 7 ;  after careful flash chromatogra- 
phy,lg we could isolate 7, as a mixture of isomers at C3 
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stirred overnight, the organic phase was separated, dried, evaporated, 
and submitted to chromatography, eluting with hexane/ethyl acetate 
mixtures. Ratios of the purified cyclization compounds determined by 
1H NMR integration were similar to the values determined in crude 
mixtures. 
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